A computational approach for single nucleotide polymorphism discovery / Uma abordagem computacional para determinação de polimorfismo de base unica

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

Genomic research is of great interest in the medical field. Therefore, understanding how genes impact the ocurrence of diseases is of significant relevance, so that proper diagnosis can be made and appropriate drugs can be developed. Most genes present great variantion and allele frequency, known as polymorphism. These variantions may be key to understanding the predisposition in individuals to certain diseases. Among polymorhisms, SNPs are of great importance, representing circa 90% of all polymorphism found in the human genome. [21]. For this work, we will study three phases in the process of detecting and analysis of SNPs. The first phase consists in the process of aligning EST sequences and cDNA to genomic DNA. Identiying genes in non-caracterized DNA sequences is one of the challenging problems in genomic research. Traditional algorithms [45, 55, 83, 84, 106] describe methods to align two arbitrary sequences. We shall describe alignment strategies of two sequences, discuss over existing existing methods for aligning cDNA with genomic DNA and propose a set of apropriate coefficients to be used in the classical algorithms to perform this kind of alignment. The seconde phase consists in detecting SNPs, whether through multiple alignments or cromatogram analysis. We shall describe how the two above mentioned methods work and discuss a new methodology to detect SNPs and HIV sequences. The third phase consists of correlating SNPs. It is known that the genetic predisposition for many diseases is not only due to a single mutation, or to the presence or absence of a single allele. In many cases, several SNPs act together and may increase or decrease the chance for a disease to manifest in a individual. Thus, it is very important to develop methods of correlation between SNPs to better understand how they interact. We shall describe correlation measures and study the presence of LD or multiple LDs in sugarcane genes,which were mapped by the SUCEST project, and in human genes

ASSUNTO(S)

bioinformatica confiabilidade (probabilidades) reliability genetic polymorphisms polimorfismos (genetica) bioinformatics

Documentos Relacionados