A discrete 3' region of U6 small nuclear RNA modulates the phosphorylation cycle of the C1 heterogeneous nuclear ribonucleoprotein particle protein.

AUTOR(ES)
RESUMO

The C heterogeneous ribonucleoprotein particle (hnRNP) protein bind to nascent pre-mRNA and may participate in assembly of the early prespliceosome. Ser/Thr phosphorylation of the C1 hnRNP protein in HeLa nuclear extracts regulates its binding to pre-mRNA (S. H. Mayrand, P. Dwen, and T. Pederson, Proc. Natl. Acad. Sci. USA 90:7764-7768, 1993). We have now further investigated the phosphorylation cycle of the C1 hnRNP protein, with emphasis on its regulation. Pretreatment of nuclear extracts with micrococcal nuclease eliminated the phosphorylation of C1 hnRNP protein, but pretreatment with DNase did not, suggesting a dependence on RNA. Oligodeoxynucleotide-targeted RNase H cleavage of U1, U2, and U4 small nuclear RNAs did not affect the phosphorylation of C1 hnRNP protein. However, cleavage of nucleotides 78 to 95, but not other regions, of U6 small nuclear RNA resulted in an inhibition of the dephosphorylation step of the C1 hnRNP protein phosphorylation cycle. This inhibition was as pronounced as that seen with the serine/threonine protein phosphatase inhibitor okadaic acid. C1 hnRNP protein dephosphorylation could be completely restored by the addition of intact U6 RNA. Add-back experiments with mutant RNAs further delineated the minimal region essential for C1 protein dephosphorylation as residing in nucleotides 85 to 92 of U6 RNA. These results illuminate a hitherto unanticipated function of U6 RNA: the modulation of a phosphorylation-dephosphorylation cycle of C1 hnRNP protein that influences the binding affinity of this protein for pre-mRNA. This newly revealed function of U6 RNA is likely to play a very early role in the prespliceosome assembly pathway, prior to U6 RNA's entry into the mature spliceosome's active center.

Documentos Relacionados