A Mitogen-Activated Protein Kinase Cascade Regulating Infection-Related Morphogenesis in Magnaporthe griseaW⃞

AUTOR(ES)
FONTE

American Society of Plant Biologists

RESUMO

Many fungal pathogens invade plants by means of specialized infection structures called appressoria. In the rice (Oryza sativa) blast fungus Magnaporthe grisea, the pathogenicity mitogen-activated protein (MAP) kinase1 (PMK1) kinase is essential for appressorium formation and invasive growth. In this study, we functionally characterized the MST7 and MST11 genes of M. grisea that are homologous with the yeast MAP kinase kinase STE7 and MAP kinase kinase kinase STE11. Similar to the pmk1 mutant, the mst7 and mst11 deletion mutants were nonpathogenic and failed to form appressoria. When a dominant MST7 allele with S212D and T216E mutations was introduced into the mst7 or mst11 mutant, appressorium formation was restored in the resulting transformants. PMK1 phosphorylation also was detected in the vegetative hyphae and appressoria of transformants expressing the MST7S212D T216E allele. However, appressoria formed by these transformants failed to penetrate and infect rice leaves, indicating that constitutively active MST7 only partially rescued the defects of the mst7 and mst11 mutants. The intracellular cAMP level was reduced in transformants expressing the MST7S212D T216E allele. We also generated MST11 mutant alleles with the sterile alpha motif (SAM) and Ras-association (RA) domains deleted. Phenotype characterizations of the resulting transformants indicate that the SAM domain but not the RA domain is essential for the function of MST11. These data indicate that MST11, MST7, and PMK1 function as a MAP kinase cascade regulating infection-related morphogenesis in M. grisea. Although no direct interaction was detected between PMK1 and MST7 or MST11 in yeast two-hybrid assays, a homolog of yeast STE50 in M. grisea directly interacted with both MST7 and MST11 and may function as the adaptor protein for the MST11-MST7-PMK1 cascade.

Documentos Relacionados