A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon.

AUTOR(ES)
RESUMO

The DNA downstream of the lux structural genes in the Vibrio fischeri lux operon has been sequenced and a new lux gene (luxG) has been identified. A hairpin loop that begins with a poly(A) region and ends with a poly(T) region and thus can function as a bidirectional termination site for luxG and a convergent gene is located immediately downstream of luxG. 3' S1 nuclease mapping has demonstrated that the luxG mRNA was induced in a cell-density-dependent fashion consistent with it being part of the lux system and that the lux mRNA terminated immediately after the hairpin loop. The mRNA coded by an open reading frame convergent to luxG on the complementary strand was also shown by S1 nuclease mapping to overlap the lux mRNA for at least 20 nucleotides before termination. Expression of DNA containing the hairpin loop, placed between a strong promoter and a reporter gene and transferred by conjugation into luminescent bacteria, demonstrated the very high efficiency of termination by this hairpin loop oriented in either direction. These results also demonstrate that the organization of the genes at the 3' ends of the lux operons of V. fischeri and V. harveyi has clearly diverged.

Documentos Relacionados