A novel palindromic triple-stranded structure formed by homopyrimidine dodecamer d-CTTCTCCTCTTC and homopurine hexamer d-GAAGAG.

AUTOR(ES)
RESUMO

We have carried out NMR and molecular mechanics studies on a complex formed when a palindromic homopyrimidine dodecamer (d-CTTCTCCTCTTC) and a homopurine hexamer (d-GAAGAG) are mixed in 1:1 molar ratio in aqueous solutions. Such studies unequivocally establish that two strands of each oligomer combine to form a triple-stranded DNA structure with a palindromic symmetry and with six T.A:T and six C+. G:C hydrogen-bonded base triads. The two purine strands are placed head to head, with their 3' ends facing each other in the center of the structure. One-half of each pyrimidine strand contains protonated and the other half contains non-protonated cytosines. The two half segments containing protonated cytosines are hydrogen bonded to each of the two purine hexamers through Hoogsteen T.A and C+.G base pairing. The segments containing non-protonated cytosines are involved in Watson-Crick (A:T and G:C) base pairing. This leads to a palindromic triplex with a C2-dyad symmetry with respect to the center of the structure. The complex is less stable at neutral pH, but the cytosines involved in Hoogsteen base pairing remain protonated even under these conditions. Molecular mechanics calculations using NMR constraints have provided a detailed three-dimensional structure of the complex. The entire stretches of purine, and the pyrimidine nucleotides have a conformation close to B-DNA.

Documentos Relacionados