A patch-clamp study on the muscarine-sensitive potassium channel in bullfrog sympathetic ganglion cells.

AUTOR(ES)
RESUMO

1. A voltage-independent K+ channel was characterized and effects of muscarine were studied in cultured bullfrog sympathetic ganglion cells using the cell-attached patch-clamp configuration. 2. Three types of single-channel current were recorded from 2- to 10-day-old cultured cells in the presence of tetraethylammonium (2-20 mM), tetrodotoxin (1-2 microM), Cd2+ (0.1 mM) and apamin (20 nM). 3. The most frequently observed channel was a voltage-independent K+ channel which was open at the resting membrane potential and had a conductance of 52.6, 78.9 and 114.9 pS at a [K+]o of 2, 40 and 100 mM, respectively. This channel was designated background K+ channel. 4. Two other channel types were observed less frequently. One had a conductance of 26 pS (external K+, 118 mM) and a long open time of several seconds at the resting membrane potential. The second channel had a smaller conductance (20 pS) and displayed a voltage-dependent activation. 5. The open probability of the background K+ channel varied between patches, ranging from 0.0005 to 0.486. The open time distribution was fitted by a single exponential with a time constant of 0.51 ms. Both of these parameters were independent of the membrane potential. The closed time distribution consisted of at least four exponentials having time constants of 0.17, 3.7, 120 ms and several seconds. 6. Muscarine (10-20 microM) applied to the membrane outside the patch pipette reversibly enhanced the activity of the background K+ channel. This effect was associated with an increase in the open probability, which resulted from an increase in the mean open time concomitant with a decrease in the mean closed time. Muscarine did not change the single-channel conductance of this channel. 7. The effects of muscarine were blocked by atropine (1 microM). 8. It is concluded that there exists a muscarine-sensitive, voltage-independent K+ channel in cultured bullfrog ganglion cells. This K+ channel appears to contribute to the generation of the resting membrane potential and underlie the slow inhibitory postsynaptic potential of these neurones in situ.

Documentos Relacionados