A ras-dependent pathway abolishes activity of a muscle-specific enhancer upstream from the muscle creatine kinase gene.

AUTOR(ES)
RESUMO

Differentiation of skeletal myoblasts is accompanied by induction of a series of tissue-specific genes whose products are required for the specialized functions of the mature muscle fiber. The program for myogenic differentiation is subject to negative control by several peptide growth factors and by the products of mutationally activated ras oncogenes, which persistently activate intracellular cascades normally triggered by specific growth factors. Previously, we reported that induction of the muscle creatine kinase (mck) gene during myogenesis was dependent on a distal upstream enhancer that cooperated with a proximal promoter to direct high levels of expression in developing muscle cells (E. A. Sternberg, G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson, Mol. Cell. Biol. 8:2896-2909). To investigate the mechanisms whereby ras blocks the induction of muscle-specific genes, we have examined the ability of mck 5' regulatory elements to direct expression of the linked reporter gene for chloramphenicol acetyltransferase (cat) in C2 myoblasts bearing mutant N-ras and H-ras oncogenes. In this paper we report that expression of activated ras alleles abolishes activity of the mck upstream enhancer but does not affect the activity of the mck promoter. The ability of ras to repress the expression of mck-cat fusion genes that have been transfected either transiently or stably into myoblasts suggests that ras may exert its effects on muscle-specific genes through mechanisms independent of chromatin configurations or DNA methylation. These results also suggest that ras blocks establishment of the myogenic phenotype by preventing the accumulation of regulatory factors required for transcriptional induction of muscle-specific genes.

Documentos Relacionados