A temperature-sensitive trpS mutation interferes with trp RNA-binding attenuation protein (TRAP) regulation of trp gene expression in Bacillus subtilis.

AUTOR(ES)
RESUMO

In Bacillus subtilis, the tryptophan-activated trp RNA-binding attenuation protein (TRAP) regulates expression of the seven tryptophan biosynthetic genes by binding to specific repeat sequences in the transcripts of the trp operon and of the folate operon, the operon containing trpG. Steinberg observed that strains containing a temperature-sensitive mutant form of tryptophanyl-tRNA synthetase, encoded by the trpS1 allele, produced elevated levels of the tryptophan pathway enzymes, when grown at high temperatures in the presence of excess L-tryptophan (W. Steinberg, J. Bacteriol. 117:1023-1034, 1974). We have confirmed this observation and have shown that expression of two reporter gene fusions, trpE'-'lacZ and trpG'-'lacZ, is also increased under these conditions. Deletion of the terminator or antiterminator RNA secondary structure involved in TRAP regulation of trp operon expression eliminated the trpS1 effect, suggesting that temperature-sensitive expression was mediated by the TRAP protein. Analysis of expression of mtrB, the gene encoding the TRAP subunit, both by examination of a lacZ translational fusion and by measuring the intracellular levels of TRAP by immunoblotting, indicated that the trpS1-induced increase in trp gene expression was not due to inhibition of mtrB expression or to alteration of the amount of TRAP present per cell. Increasing the cellular level of TRAP by overexpressing mtrB partially counteracted the trpS1 effect, demonstrating that active TRAP was limiting in the trpS1 mutant. We also showed that elevated trp operon expression was not due to increased transcription initiation at the upstream aroF promoter, a promoter that also contributes to trp operon expression. We postulate that the increase in trp gene expression observed in the trpS1 mutant is due to the reduced availability of functional TRAP. This could result from inhibition of TRAP function by uncharged tRNA(Trp) molecules or by increased synthesis of some other transcript capable of binding and sequestering the TRAP regulatory protein.

Documentos Relacionados