Abnormal sodium pump distribution during renal tubulogenesis in congenital murine polycystic kidney disease.

AUTOR(ES)
RESUMO

Congenital polycystic kidney disease is characterized by the formation of large fluid-filled cysts in kidney tubules. It has been postulated that increased epithelial cell proliferation and altered transtubular fluid transport are necessary for cyst formation. To address the latter problem, we have studied the plasma membrane distribution of the alpha 1 and beta 1 subunits of Na+/K(+)-ATPase during progressive stages of proximal and collecting tubular cyst formation in the CPK mouse, a murine model of autosomal recessive polycystic kidney disease. In both control and cystic proximal tubules, Na+/K(+)-ATPase distribution was restricted to the basal-lateral membrane of cells. However, in newborn through day 5 kidney tissue, 16% of control vs. 47% of cystic outer cortical, 6% of control vs. 46% of cystic inner cortical, and 2% of control vs. 63% of cystic medullary collecting tubules demonstrated apical and lateral membrane distribution of Na+/K(+)-ATPase. In all nephrogenic zones, the percentage of control or cystic collecting tubules demonstrating apical membrane distribution of Na+/K(+)-ATPase decreased over time, but the percentage of cystic collecting tubules with apical membrane Na+/K(+)-ATPase remained significantly greater than in developmentally matched controls. No alterations in the normal distributions of other apical or basal-lateral membrane marker proteins were noted at any stage of control or cystic proximal or collecting tubule development. We conclude that apical-lateral membrane Na+/K(+)-ATPase expression is a normal transient feature of early collecting tubule development. However, apical membrane Na+/K(+)-ATPase persists in cystic kidneys, suggesting that such expression may be a manifestation of the relatively undifferentiated phenotype of epithelial cells lining collecting tubule cysts. The persistence of apical membrane Na+/K(+)-ATPase, if the enzyme is functional, may have pathogenic important in abnormal transtubular fluid transport in polycystic kidney disease.

Documentos Relacionados