Adenine ribo- and deoxyribonucleotide metabolism in human erythrocytes, B- and T-lymphocyte cell lines, and monocyte-macrophages.

AUTOR(ES)
RESUMO

Ordinarily packaged in DNA, adenine deoxyribonucleotides are preferentially concentrated in erythrocyte and lymphocyte cytosol in adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. A spectrum of cytosol enzyme activities are defined in terms of reaction velocities, K0.5s, and nucleotide partition after incubation with ribo- and deoxyribonucleotides. AMP and dAMP were dephosphorylated, but only AMP was deaminated in vitro. Although nucleotidase activity is much stronger in lymphocytes, AMP deaminase was the dominant degradative reaction in all erythrocyte and lymphocyte lysates under the conditions specified. For most cytosolic enzymes, ribonucleotides were preferred cofactors, implying that dADP and dATP often may be bystanders at metabolic events. The adenylate kinase-mediated partition of approximately equimolar ribo- and deoxyribonucleotide substrates yielded a very large preponderance of AMP in the monophosphate compartment, the monophosphates alone being directly vulnerable to degradative loss. The adenylate kinase(s) of lymphocytes differed strikingly from those of erythrocytes in reaction velocities with nucleotide cofactors, K0.5s, and in susceptibility to substrate inhibition.

Documentos Relacionados