Allozymic Variation and Linkage Disequilibrium in Some Laboratory Populations of DROSOPHILA MELANOGASTER

AUTOR(ES)
RESUMO

Nine laboratory populations of D. melanogaster were surveyed by starch gel electrophoresis for variation at 17 enzyme loci. A single-fly extract could be assayed for all 17 enzymes, so that the data consist of 17-locus genotypes.——Pairwise linkage disequilibria were estimated from the multilocus genotypic frequencies, using both Burrows' and Hill's methods. Large amounts of linkage disequilibrium were found, in contrast to the results reported for natural populations.—Knowledge of the approximate sizes of these populations was used to compare the observed heterozygosities and linkage disequilibria with predictions of the neutral allele hypothesis. The relatively large amount of linkage disequilibrium is consistent with the small sizes of the populations. However, the levels of heterozygosity in at least some populations suggest that some mechanism has been operating to retard the rate of decay by random drift. Several examples of significant deviation from Hardy-Weinberg frequencies and the large amount of linkage disequilibrum present in these populations indicate that a likely mechanism is selective effects associated with neutral alleles because of linkage disequilibrium with selected loci (e.g., "associative overdominance"). The results are therefore consistent with both neutralist, and selectionist hypotheses, but suggest the importance of considering linkage disequilibrium between neutral and selected loci when attempting to explain the dynamics of enzyme polymorphisms.

Documentos Relacionados