Alteration of glucose transport and diauxic growth in 5-thio-D-glucose-resistant mutants of Azotobacter vinelandii.

AUTOR(ES)
RESUMO

Spontaneous mutants of Azotobacter vinelandii defective for glucose utilization were selected as resistant to 5-thio-D-glucose. Mutant strains AM2, AM38, and AM39 exhibited longer generation times than the wild type when grown on glucose. Mutant strain AM2 also exhibited an altered Km and Vmax for glucose uptake. During acetate-glucose diauxie, glucose utilization in the 5-thio-D-glucose-resistant mutants was subject to severe inhibition by acetate. These mutants did not exhibit the normal glucose phase of diauxie. Transport studies during diauxie indicated that glucose uptake was not induced in mutant strain AM2. However, increasing the glucose concentration from 25 to 200 mM relieved the severe acetate inhibition, and under these conditions the mutant strain AM2 exhibited normal diauxie. Revertants of mutant strain AM2 exhibited normal glucose and diauxie growth. The results are discussed in terms of a model for acetate regulation of glucose utilization in A. vinelandii.

Documentos Relacionados