Amino Acid Biosynthesis in the Halophilic Archaeon Haloarcula hispanica

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Biosynthesis of proteinogenic amino acids in the extremely halophilic archaeon Haloarcula hispanica was explored by using biosynthetically directed fractional 13C labeling with a mixture of 90% unlabeled and 10% uniformly 13C-labeled glycerol. The resulting 13C-labeling patterns in the amino acids were analyzed by two-dimensional 13C,1H correlation spectroscopy. The experimental data provided evidence for a split pathway for isoleucine biosynthesis, with 56% of the total Ile originating from threonine and pyruvate via the threonine pathway and 44% originating from pyruvate and acetyl coenzyme A via the pyruvate pathway. In addition, the diaminopimelate pathway involving diaminopimelate dehydrogenase was shown to lead to lysine biosynthesis and an analysis of the 13C-labeling pattern in tyrosine indicated novel biosynthetic pathways that have so far not been further characterized. For the 17 other proteinogenic amino acids, the data were consistent with data for commonly found biosynthetic pathways. A comparison of our data with the amino acid metabolisms of eucarya and bacteria supports the theory that pathways for synthesis of proteinogenic amino acids were established before ancient cells diverged into archaea, bacteria, and eucarya.

Documentos Relacionados