An ABC Transporter Plays a Developmental Aggregation Role in Myxococcus xanthus

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Myxococcus xanthus is a gram-negative bacterium which has a complex life cycle. Autochemotaxis, a process whereby cells release a self-generated signaling molecule, may be the principal mechanism facilitating directed motility in both the vegetative swarming and developmental aggregation stages of this life cycle. The process requires the Frz signal transduction system, including FrzZ, a protein which is composed of two domains, both showing homology to the enteric chemotaxis response regulator CheY. The first domain of FrzZ (FrzZ1), when expressed as bait in the yeast two-hybrid system and screened against a library, was shown to potentially interact with the C-terminal portion of a protein encoding an ATP-binding cassette (AbcA). The activation domain-AbcA fusion protein did not interact with the second domain of FrzZ (FrzZ2) or with two other M. xanthus response regulator-containing proteins presented as bait, suggesting that the FrzZ1-AbcA interaction may be specific. Cloning and sequencing of the upstream region of the abcA gene showed the ATP-binding cassette to be linked to a large hydrophobic, potentially membrane-spanning domain. This domain organization is characteristic of a subgroup of ABC transporters which perform export functions. Cloning and sequencing downstream of abcA indicated that the ABC transporter is at the start of an operon containing three open reading frames. An insertion mutation in the abcA gene resulted in cells displaying the frizzy aggregation phenotype, providing additional evidence that FrzZ and AbcA may be part of the same signal transduction pathway. Cells with mutations in genes downstream of abcA showed no developmental defects. Analysis of the proposed exporter role of AbcA in cell mixing experiments showed that the ABC transporter mutant could be rescued by extracellular complementation. We speculate that the AbcA protein may be involved in the export of a molecule required for the autochemotactic process.

Documentos Relacionados