Análise dinâmica, termodinâmica e microfísica de uma linha de instabilidade com o radar meteorológico móvel MXPOL / Microphysical, dynamic and thermodynamic analysis of a squall line using the mobile meteorological radar MXPOL

AUTOR(ES)
DATA DE PUBLICAÇÃO

2010

RESUMO

A prefrontal squal line (LI) that reached tne metropolitan area of São Paulo on April 26 2007 was monitored and analyzed by means of of surface and upper air measurements, weather radar and satellite data. Analyses indicate a favorable synoptic environment to form and sustain the LI. In its genesis region there was relatively warm and moiture air near the surface and relatively cold and dry air aloft with mass convergence below and divergence aloft, as well as temperature gradient along its path induced by the associated cold front. This LI was measured with the MXPOL weather radar and allowed a mesoscale dynamic analysis as well as a microphysics of this weather system. The later was performed by means of a hydrometeor classification with the polarimetric data sets of MXPOL. Initially, the differential reflectivity (ZDR) and the efective reflectivity (Z) were corrected by the selfconsistency method (Vivekanandan et al., 2003) together with the specific diferrential phase (KDP). Ounce removed the ZDR (-0,36 dB) and Z (-0,46 dBZ) biases, the hydrometeoro classification (small drops to hail, insects, ground clutter and second trip echoes) was carrie out by the fuzzy logic method (Vivekanadan et al., 2003). The hydrometeor classification was made at constant elevation angles (PPI) across the LI. The hydrometeoro types are compatible to similar studies. For instance, the bright band was classified as a region mixed phase with drops below and ice crystals aboce it. The LI internal dynamics was analyzed with the help of the radial velocity and indicated a low level jet, cyclonic convergence at the leading edge and divergence aloft at the convective band, among other features. This fast moving LI produced 7 mm of rainfall and wind gust of 18 m s-1. Its most significant impact over RMSP was caused by the wind intensity.

ASSUNTO(S)

polarimetria radar hydrometeor classification polarimetry radar classificação de hidrometeoros

Documentos Relacionados