Análogos cosmológicos dos efeitos Schwinger estático e oscilatório / Cosmological Analogues of the Static and Oscillatory Schwinger Effect

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

In this work we study the quantum effects of particle creation in the cosmological context and of the classical electrodynamics. With the studies of the particle creation in constant and oscillatory external electrical fields, the known static and oscillatory Schwinger effects, respectively, it was possible to study the polarization of the quantum vacuum and the consequently creation of particles from the vacuum. This is a non perturbative effect in the context of the electrodynamics and its observation would be of great importance to validate this theory in this regime. This effect, however, was not yet experimentally detected, since very strong electric fields are necessary in the static case. However, in the oscillatory case there is an experiment currently in development for the detection of an analog quantum effect called dynamical Casimir effect. The verification of the dynamical Casimir effect is important for the validation of the oscillatory Schwinger effect, since the movement of the boundary conditions is equivalent to the application of a external field. Finally, it was studied the creation of particles in a cosmological context, being the static case the creation of particles in the inflationary epoch of the universe. The dynamical case corresponds to the reheating period or, more precisely, its initial stage known as preheating, in which the creation of particles is more efficient. The creation of particles in the inflationary epoch occurs due to the accelerated expansion of the universe. By means of a simple canonical transformation it was possible to observe that the mechanism of particle creation in this period is the same of the one in Schwinger effect. In the same way, for the preheating, in which the particle creation is given by the oscillation of the inflaton field around the minimum of its potential, the mechanism of creation happens due to the parametric resonance described by a Mathieu equation. This is exactly the same mechanism that describes the oscillatory Schwinger effect. In this way, the mechanisms of particle creation in the cases of the static and oscillatory Schwinger effects are analogs to the creation mechanisms from inflation and from preheating. The experimental detection of this effect in a terrestrial experiment would be a confirmation for this cosmological mechanisms.

ASSUNTO(S)

cosmologia cosmology teoria quântica de campos quantum field theory

Documentos Relacionados