Analysis of the defects of temperature-sensitive mutants of vesicular stomatitis virus: intracellular degradation of specific viral proteins.

AUTOR(ES)
RESUMO

The metabolism of viral RNA and proteins has been studied in cells infected with temperature-sensitive mutant strains of vesicular stomatitis virus. Certain viral proteins encoded by the mutant strains, usually the putative mutant protein for the assigned complementation group, were shown to be degraded more rapidly at the nonpermissive temperature than were the wild-type proteins. Group III mutants (tsG33, tsM301) encode M proteins which are degraded three- to fourfold faster than the wild-type protein. This defect cannot be fully rescued by coinfection with wild-type virus, and thus the defect appears to be in the M protein itself. Mutants tsM601 (VI) and tsG41(IV) encode N proteins which are degraded much faster than the wild-type protein and also share the property of being defective in replication of viral RNA, suggesting a correlation between these phenotypic properties. Furthermore, the L proteins of tsG11(I) and tsG13(I) are more labile than the wild-type protein at the nonpermissive temperature. The G protein of tsM501(V) did not undergo the change in electrophoretic mobility previously shown to be the result of sialylation, suggesting that it is defective in maturation or glycosylation at the nonpermissive temperature. Three of the mutants previously isolated in this laboratory, tsM502(V), tsM601(VI), and tsM602(VI), were shown to be defective in viral RNA synthesis at the nonpermissive temperature. Mutant tsM601(VI) was defective mainly in viral RNA replication, whereas tsM502(V) appeared to be totally defective for viral RNA transcription and replication at the nonpermissive temperature.

Documentos Relacionados