Antifreeze proteins in winter rye are similar to pathogenesis-related proteins.

AUTOR(ES)
RESUMO

The ability to control extracellular ice formation during freezing is critical to the survival of freezing-tolerant plants. Antifreeze proteins, which are proteins that have the ability to retard ice crystal growth, were recently identified as the most abundant apoplastic proteins in cold-acclimated winter rye (Secale cereale L.) leaves. In the experiments reported here, amino-terminal sequence comparisons, immuno-cross-reactions, and enzyme activity assays all indicated that these antifreeze proteins are similar to members of three classes of pathogenesis-related proteins, namely, endochitinases, endo-beta-1,3-glucanases, and thaumatin-like proteins. Apoplastic endochitinases and endo-beta-1,3-glucanases that were induced by pathogens in freezing-sensitive tobacco did not exhibit antifreeze activity. Our findings suggest that subtle structural differences may have evolved in the pathogenesis-related proteins that accumulate at cold temperatures in winter rye to confer upon these proteins the ability to bind to ice.

Documentos Relacionados