Antipyretic activity of a human immunoglobulin preparation for intravenous use in an experimental model of fever in rabbits.

AUTOR(ES)
RESUMO

In an effort to elucidate the reason that fever in patients with severe bacterial infections subsided in some cases after the administration of human immunoglobulin preparations for intravenous use (IGIVs), we focused our attention on the antipyretic activity of IGIVs by investigating experimentally produced pyrexia in rabbits with Escherichia coli-derived lipopolysaccharide (LPS). Although little difference in antibody titers against the antigens composing molecules of LPS was found among the IGIVs that were used, IGIVs treated at pH 4 were demonstrated to inhibit a strongly LPS-induced second-phase febrile response, whereas the inhibitory effect of sulfonated and pepsin-treated IGIVs was weak. In vitro experiments on interleukin-1 production by rabbit macrophages stimulated with LPS, silica gel or latex beads and on rosette formation showed that these functions of the cells were also inhibited by IGIVs. The in vivo antipyretic activity and the results of the two in vitro experiments correlated closely. The inhibitory potency decreased in the following order: immunoglobulin G (IgG) treated at pH4, sulfonated IgG, and pepsin-treated IgG. Thus, it is possible that the subsidence of LPS-induced fever by IGIVs was mediated by inhibition of interleukin 1 production by means of binding of IgG to macrophages via an Fc receptor. Results of this study also indicated the importance of the structural integrity of the Fc portion of the IgG contained in the IGIVs to bind with its receptor on the macrophage so as to influence the various functions carried out by the cell.

Documentos Relacionados