LORENZI, A., SILVA, B. V., BARBOSA, M. P., SILVA FILHO, L. C. P.
2017Resumo O estudo visa avaliar a possibilidade de se usar os resultados do ensaio de arrancamento “pull-out test” - ensaio de aderência aço-concreto para estimativa da resistência à compressão do concreto, este método vem sendo utilizado com sucesso pelo grupo de pesquisa APULOT, desde 2008 [1]. A pesquisa ora realizada evidencia a existência da correlação entre essas duas variáveis, aderência e resistência à compressão do concreto, o que permite determinar estimativas apropriadas da resistência à compressão do concreto, melhorando deste modo a capacidade do controle tecnológico “in situ” do concreto. Entretanto para se obter respostas adequadas dos ensaios de aderência aço-concreto é necessário controlar as configurações de ensaio, dado que existem diversos formatos de corpos de prova para estes tipos de ensaios na literatura. Deste modo, este trabalho tem por objetivo correlacionar os resultados obtidos em ensaios de aderência do tipo pull-out a suas variáveis por meio da utilização de Redes Neurais Artificiais (RNA). Com a utilização de uma RNA, pode-se correlacionar, de forma não linear, dados de entrada conhecidos (idade de ruptura, comprimento de ancoragem, cobrimento e resistência à compressão) com parâmetros de controle (tensão de aderência aço-concreto). Para gerar o modelo neural é necessário treinar a rede, expondo-a a uma série de dados com parâmetros de entrada e de saída conhecidos. Isto permite estimar os coeficientes de correlação entre os neurônios de cada camada. O presente trabalho apresenta a modelagem de uma RNA capaz de realizar uma aproximação não linear, visando estimar a resistência à compressão do concreto a partir dos resultados de ensaios de aderência aço-concreto.