Arabidopsis RopGAPs Are a Novel Family of Rho GTPase-Activating Proteins that Require the Cdc42/Rac-Interactive Binding Motif for Rop-Specific GTPase Stimulation1

AUTOR(ES)
FONTE

American Society of Plant Physiologists

RESUMO

The plant-specific Rop subfamily of Rho GTPases, most closely related to the mammalian Cdc42 and Rac GTPases, plays an important role in the regulation of calcium-dependent pollen tube growth, H2O2-mediated cell death, and many other processes in plants. In a search for Rop interactors using the two-hybrid method, we identified a family of Rho GTPase-activating proteins (GAP) from Arabidopsis, termed RopGAPs. In addition to a GAP catalytic domain, RopGAPs contain a Cdc42/Rac-interactive binding (CRIB) motif known to allow Cdc42/Rac effector proteins to bind activated Cdc42/Rac. This novel combination of a GAP domain with a CRIB motif is widespread in higher plants and is unique to the regulation of the Rop GTPase. A critical role for CRIB in the regulation of in vitro RopGAP activity was demonstrated using point and deletion mutations. Both types of mutants have drastically reduced capacities to stimulate the intrinsic Rop GTPase activity and to bind Rop. Furthermore, RopGAPs preferentially stimulate the GTPase activity of Rop, but not Cdc42 in a CRIB-dependent manner. In vitro binding assays show that the RopGAP CRIB domain interacts with GTP- and GDP-bound forms of Rop, as well as the transitional state of Rop mimicked by aluminum fluoride. The CRIB domain also promotes the association of the GAP domain with the GDP-bound Rop, as does aluminum fluoride. These results reveal a novel CRIB-dependent mechanism for the regulation of the plant-specific family of Rho GAPs. We propose that the CRIB domain facilitates the formation of or enhanced GAP-mediated stabilization of the transitional state of the Rop GTPase.

Documentos Relacionados