Arthropathic Properties Related to the Molecular Weight of Peptidoglycan-Polysaccharide Polymers of Streptococcal Cell Walls

AUTOR(ES)
RESUMO

The covalently bound polymers of peptidoglycan and group-specific polysaccharide (PG-APS) were isolated from the cell walls of group A streptococci. Arthritis was induced in rats with a single intraperitoneal injection of an aqueous suspension of PG-APS fragments derived by sonication. The joint lesions induced with this polydisperse suspension followed a bimodal pattern consisting of an acute phase, which reached a peak 5 days after injection and then receded, followed by a chronic, remittent, erosive arthritis lasting several months. The relative severities of the acute and chronic phases could be manipulated by selection of the size of PG-APS fragments. The fragments of PG-APS obtained by sonic treatment were resolved on the basis of size into three major populations by sucrose gradient or differential centrifugation. Based upon light scattering and gel filtration, the average molecular weight of the largest family of fragments was estimated to be about 500 × 106, the intermediate fragments were 50 × 106 daltons, and the predominant size in the smallest population was 5.3 × 106 daltons. The larger fragments induced negligible acute inflammation, but chronic disease became apparent 5 to 9 weeks after injection. The smallest fragments induced the most severe acute inflammation, with relatively little late, chronic joint disease. The particles of intermediate size induced moderate acute inflammation and the most severe chronic, erosive joint lesions. A single injection of fragments of the isolated peptidoglycan moiety of the PG-APS induced only a moderate acute inflammation of joints, with no apparent capacity to maintain the injury and induce chronic disease.

Documentos Relacionados