Beta-adrenergic stimulation of pineal N-acetyltransferase: adenosine 3':5'-cyclic monophosphate stimulates both RNA and protein synthesis.

AUTOR(ES)
RESUMO

The lag period in the induction of rat pineal N-acetyltransferase (arylamine acetyltransferase or acetyl-CoA:arylamine N-acetyltransferase EC 2.3.1.5) by catecholamines via the beta-adrenergic receptor varies with the length of exposure of the rat to light or darkness. If rats have been exposed to light and reduced sympathetic nerve activity for more than 12 hr, this lag period is 1-2 hr long. Under these conditions, actinomycin D completely blocks the induction of N-acetyltransferase by isoproterenol and by dibutyryl adenosine 3':5'-cyclic monophosphate (cyclic AMP). In contrast, if enzyme activity is caused to fall by brief exposure to light at night when N-acetyltransferase activity is high, reinduction by catecholamines occurs almost immediately. In this case, actinomycin D does not block the reinduction of N-acetyltransferase by isoproterenol or by dibutyryl cyclic AMP. Cycloheximide blocks N-acetyltransferase induction under all conditions tested. Thus, new protein synthesis is always required for N-acetyltransferase induction; however, the requirement for RNA synthesis is variable, and contributes to the length of the lag period for induction. It is postulated that both beta-adrenergic stimulation and dibutyryl cyclic AMP act intracellularly at two separate sites in the induction of pineal N-acetyltransferase. One site is in the stimulation of transcription, and the other is in the stimulation of post-transcriptional events.

Documentos Relacionados