Binary liquid phase separation and critical phenomena in a protein/water solution.

AUTOR(ES)
RESUMO

We have investigated the phase diagram of aqueous solutions of the bovine lens protein gamma II-crystallin. For temperatures T less than Tc = 278.5 K, we find that these solutions exhibit a reversible coexistence between two isotropic liquid phases differing in protein concentration. The dilute and concentrated branches of the coexistence curve were characterized, consistently, both by measurements of the two coexisting concentrations, c(T), and by measuring the cloud temperatures for various initial concentrations. We estimate that the critical concentration, cc, is 244 mg of protein per ml solution. The coexistence curve is well represented by the absolute value of (c - cc)/cc = 5.2 square root (Tc - T)/Tc. Using the temperature dependence of the scattered light intensity along isochores parallel to the critical isochore, we estimated the location of the spinodal line and found it to have the form (c - cc)/cc = 3.0 square root (Tc - T)/Tc. The ratio of the widths of the coexistence curve and the spinodal line, (5.2/3.0), is close to the mean-field value square root 3. We have also observed the growth of large crystals of gamma II-crystallin in some of these aqueous solutions and have made preliminary observations as to the factors that promote or delay the onset of crystallization. These findings suggest that selected protein/water systems can serve as excellent model systems for the study of phase transitions and critical phenomena.

Documentos Relacionados