Binding of Candida albicans yeast cells to mouse popliteal lymph node tissue is mediated by macrophages.

AUTOR(ES)
RESUMO

We previously reported that Candida albicans yeast cells adhere to the macrophage-rich medullary and subcapsular sinus areas of mouse lymph node tissue. To determine whether the yeast cell-lymph node interaction is mediated by macrophages, the effect of specific elimination of macrophages on yeast cell binding was studied, and yeast cell adherence was correlated with the ingestion of India ink by lymph node cells. Macrophage elimination was done by use of liposome-containing dichloromethylene diphosphonate (L-Cl2MDP). Mice were injected in the hind footpads with the L-Cl2MDP preparation, popliteal lymph nodes were removed 5 days later, and yeast cell adherence was determined by an ex vivo binding assay. As controls, lymph nodes from mice that received footpad injections of either phosphate-buffered saline (PBS) alone or liposome-containing PBS were used. Use of macrophage- and neutrophil-specific monoclonal antibodies in tissue immunostaining showed that the L-Cl2MDP treatment eliminated macrophages but not neutrophils from the medullary and subcapsular sinus areas of the popliteal lymph nodes. A striking reduction of yeast cell adherence occurred with lymph nodes from L-Cl2MDP-treated mice compared with lymph nodes from control animals. The lymph node-yeast cell binding patterns of L-Cl2MDP-treated and control mice were the same regardless of mouse strain, sex, or T-cell competency. Results of India ink experiments, in which India ink was injected into footpads of mice and was rapidly taken up by popliteal lymph node macrophages, showed a strong correlation between yeast adherence and India ink staining of cells. In addition, the interaction of yeast cells with lymph node tissue from normal mice was not significantly affected by the addition of two extracellular matrix proteins, fibronectin and laminin, during the ex vivo adherence assay. These data indicate that medullary and subcapsular sinus lymph node macrophages express an adhesion system similar to that described for mouse splenic marginal zone macrophages.

Documentos Relacionados