Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

We compared the transient increase of Ca2+ in single spines on basal dendrites of rat neocortical layer 5 pyramidal neurons evoked by subthreshold excitatory postsynaptic potentials (EPSPs) and back-propagating action potentials (APs) by using calcium fluorescence imaging. AP-evoked Ca2+ transients were detected in both the spines and in the adjacent dendritic shaft, whereas Ca2+ transients evoked by single EPSPs were largely restricted to a single active spine head. Calcium transients elicited in the active spines by a single AP or EPSP, in spines up to 80 μm for the soma, were of comparable amplitude. The Ca2+ transient in an active spine evoked by pairing an EPSP and a back-propagating AP separated by a time interval of 50 ms was larger if the AP followed the EPSP than if it preceded it. This difference reflected supra- and sublinear summation of Ca2+ transients, respectively. A comparable dependence of spinous Ca2+ transients on relative timing was observed also when short bursts of APs and EPSPs were paired. These results indicate that the amplitude of the spinous Ca2+ transients during coincident pre- and postsynaptic activity depended critically on the relative order of subthreshold EPSPs and back-propagating APs. Thus, in neocortical neurons the amplitude of spinous Ca2+ transients could encode small time differences between pre- and postsynaptic activity.

Documentos Relacionados