Calorimetric Properties of Dehydrating Pollen (Analysis of a Desiccation-Tolerant and an Intolerant Species).

AUTOR(ES)
RESUMO

The physical state of water in the desiccation-tolerant pollen of Typha latifolia L. and the desiccation-sensitive pollen of Zea mays L. was studied using differential scanning calorimetry in an attempt to further unravel the complex mechanisms of desiccation tolerance. Melting transitions of water were not observed at water content (wc) values less than 0.21 (T. latifolia) and 0.26 (Z. mays) g H2O/g dry weight. At moisture levels at which melting transitions were not observable, water properties could be characterized by changes in heat capacity. Three hydration regions could be distinguished with the defining wc values changing as a function of temperature. Shifts in baseline power resembling second-order transitions were observed in both species and were interpreted as glass-to-liquid transitions, the glass-transition temperatures being dependent on wc. Irrespective of the extent of desiccation tolerance, both pollens exhibited similar state diagrams. The viability of maize pollen at room temperature decreased gradually with the removal of the unfrozen water fraction. In maize, viability was completely lost before grains were sufficiently dried to enter into a glassy state. Apparently, the glassy state per se cannot provide desiccation tolerance. From the existing data, we conclude that, although no major differences in the physical behavior of water could be distinguished between desiccation-tolerant and -intolerant pollens, the physiological response to the loss of water varies between the two pollen types.

Documentos Relacionados