Calorimetry of apolipoprotein-A1 binding to phosphatidylcholine-triolein-cholesterol emulsions.

AUTOR(ES)
RESUMO

The thermotropic properties of triolein-rich, low-cholesterol dipalmitoyl phosphatidylcholine (DPPC) emulsion particles with well-defined chemical compositions (approximately 88% triolein, 1% cholesterol, 11% diacyl phosphatidylcholine) and particle size distributions (mean diameter, approximately 1000-1100 A) were studied in the absence and presence of apolipoprotein-A1 by a combination of differential scanning and titration calorimetry. The results are compared to egg yolk PC emulsions of similar composition and size. Isothermal titration calorimetry at 30 degrees C was used to saturate the emulsion surface with apo-A1 and rapidly quantitate the binding constants (affinity Ka = 11.1 +/- 3.5 x 10(6) M-1 and capacity N = 1.0 +/- 0.09 apo-A1 per 1000 DPPC) and heats of binding (enthalpy H = -940 +/- 35 kcal mol-1 apo-A1 or -0.92 +/- 0.12 kcal mol-1 DPPC). The entropy of association is -3070 cal deg-1 mol-1 protein or -3 cal deg-1 mol-1 DPPC. Without protein on the surface, the differential scanning calorimetry heating curve of the emulsion showed three endothermic transitions at 24.3 degrees C, 33.0 degrees C, and 40.0 degrees C with a combined enthalpy of 1.53 +/- 0.2 kcal mol-1 DPPC. With apo-A1 on the surface, the heating curve showed the three transitions more clearly, in particular, the second transition became more prominent by significant increases in both the calorimetric and Van't Hoff enthalpies. The combined enthalpy was 2.70 +/- 0.12 kcal mol-1 DPPC and remained constant upon repeated heating and cooling. Indicating that the newly formed DPPC emulsion-Apo-A1 complex is thermally reversible during calorimetry. Thus there is an increase in delta H of 1.17 kcal mol-1 DPPC after apo-A1 is bound, which is roughly balanced by the heat released during binding (-0.92 kcal) of apo-A1. The melting entropy increase, +3.8 cal deg-1 mol-1 DPPC of the three transitions after apo-A1 binds, also roughly balances the entropy (-3 cal deg-1 mol-1 DPPC) of association of apo-A1. These changes indicate that apo-A1 increases the amount of ordered gel-like phase on the surface of DPPC emulsions when added at 30 degrees C. From the stoichiometry of the emulsions we calculate that the mean area of DPPC at the triolein/DPPC interface is 54.5 A2 at 41 degrees C and 54.2 A2 at 30 degrees C. The binding of apo-A1 at 30 degrees C to the emulsion reduces the surface area per DPPC molecule from 54.2 A2 to 50.8 A2. At 30 degrees apo-A1 binds with high affinity and low capacity to the surface of DPPC emulsions and increases the packing density of the lipid domain to which it binds. Apo-A1 was also titrated onto DPPC emulsions at 45 degrees C. This temperature is above the gel liquid crystal transition. No heat was released or adsorbed. Furthermore, egg yolk phosphatidylcholine emulsions of nearly identical composition were also titrated at 30 degrees C with apo-A1 and were euthermic. Association constants were previously measured using a classical centrifugation assay and were used to calculate the entropy of apo-A1 binding (+28 cal deg-1 mol-1 apo-A1). This value indicates that apo-A1 binding to a fluid surface like egg yolk phosphatidylcholine or probably DPPC at 45 degrees C is hydrophobic and is consistent with hydrocarbon lipid or protein moities coming together and excluding water. Thus the binding of apo-A1 to partly crystalline surfaces is entropically negative and increases the order of the already partly ordered phases, whereas binding to liquid surfaces is mainly an entropically driven hydrophobic process.

Documentos Relacionados