CD2 molecules redistribute to the uropod during T cell scanning: Implications for cellular activation and immune surveillance

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

Dynamic binding between CD2 and CD58 counter-receptors on opposing cells optimizes immune recognition through stabilization of cell–cell contact and juxtaposition of surface membranes at a distance suitable for T cell receptor–ligand interaction. Digitized time-lapse differential interference contrast and immunofluorescence microscopy on living cells now show that this binding also induces T cell polarization. Moreover, CD2 can facilitate motility of T cells along antigen-presenting cells via a movement referred to as scanning. Both activated CD4 and CD8 T cells are able to scan antigen-presenting cells surfaces in the absence of cognate antigen. Scanning is critically dependent on T cell β-integrin function, as well as myosin light chain kinase. More importantly, surface CD2 molecules rapidly redistribute on interaction with a cellular substratum, resulting in a 100-fold greater CD2 density in the uropod versus the leading edge. In contrast, no redistribution is observed for CD11a/CD18 or CD45. Molecular compartmentalization of CD2, T cell receptor, and lipid rafts within the uropod prearranges the cellular activation machinery for subsequent immune recognition. This “presynapse” formation on primed T cells will likely facilitate the antigen-dependent recognition capability required for efficient immune surveillance.

Documentos Relacionados