Changes in Sodium Pump Expression Dictate the Effects of Ouabain on Cell Growth*

AUTOR(ES)
FONTE

American Society for Biochemistry and Molecular Biology

RESUMO

Here we show that ouabain-induced cell growth regulation is intrinsically coupled to changes in the cellular amount of Na/K-ATPase via the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. Ouabain increases the endocytosis and degradation of Na/K-ATPase in LLC-PK1, human breast (BT20), and prostate (DU145) cancer cells. However, ouabain stimulates the PI3K/Akt/mTOR pathway and consequently up-regulates the expression of Na/K-ATPase in LLC-PK1 but not BT20 and DU145 cells. This up-regulation is sufficient to replete the plasma membrane pool of Na/K-ATPase and to stimulate cell proliferation in LLC-PK1 cells. On the other hand, ouabain causes a gradual depletion of Na/K-ATPase and an increased expression of cell cycle inhibitor p21cip, which consequently inhibits cell proliferation in BT20 and DU145 cells. Consistently, we observe that small interfering RNA-mediated knockdown of Na/K-ATPase is sufficient to induce the expression of p21cip and slow the proliferation of LLC-PK1 cells. Moreover, this knockdown converts the growth stimulatory effect of ouabain to growth inhibition in LLC-PK1 cells. Mechanistically, both Src and caveolin-1 are required for ouabain-induced activation of Akt and up-regulation of Na/K-ATPase. Furthermore, inhibition of the PI3K/Akt/mTOR pathway by rapamycin completely blocks ouabain-induced expression of Na/K-ATPase and converts ouabain-induced growth stimulation to growth inhibition in LLC-PK1 cells. Taken together, we conclude that changes in the expression of Na/K-ATPase dictate the growth regulatory effects of ouabain on cells.

Documentos Relacionados