Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes.

AUTOR(ES)
RESUMO

Cecropins, positively charged antibacterial peptides found in the cecropia moth, and synthetic peptide analogs form large time-variant and voltage-dependent ion channels in planar lipid membranes in the physiological range of concentration. Single-channel conductances of up to 2.5 nS (in 0.1 M NaCl) were observed, which suggests a channel diameter of 4 nm. Channels formed by the peptides cecropin AD and MP3 had a permeability ratio of Cl-/Na+ = 2:1 in 0.1 M NaCl. A comparative study of the three cecropins, cecropins A, B, and D, and of six synthetic analogs allowed determination of structural requirements for pore formation. Shorter amphipathic peptides did not form channels, although they adsorbed to the bilayer. A flexible segment between the N-terminal amphipathic region and the C-terminal more hydrophobic region of the peptide was required for the observation of a time-variant, voltage-dependent conductance. Cecropin AD was the most effective voltage-dependent pore-forming peptide and was also the most potent antibacterial peptide against several test organisms. A positive surface charge or cholesterol in the bilayer reduced the conductances caused by cecropin AD or MP3 by at least 5-fold. This behavior is consistent with the known insensitivity of eukaryotic cells to cecropins. Our observations suggest that the broad antibacterial activity of cecropins is due to formation of large pores in bacterial cell membranes.

Documentos Relacionados