Characterization of a C-5,13-Cleaving Enzyme of 13(S)-Hydroperoxide of Linolenic Acid by Soybean Seed.

AUTOR(ES)
RESUMO

An activity was found in mature soybean seeds (Glycine max L. cv Century) that cleaved 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13S-HPOT) into 13-oxo-9(Z),11(E)-tridecadienoic acid and two isomeric pentenols, 2(Z)-penten-1-ol and 1-penten-3-ol. Isomeric pentene dimers were also produced and were presumably derived from the combination of two pentene radicals. 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid (13S-HPOD) was, by contrast, a poor substrate. Activity with 13S-HPOT increased 24-fold under anaerobic conditions reminiscent of a similar anaerobic promoted reaction of 13S-HPOD catalyzed by lipoxygenase (LOX) in the presence of linoleic acid. However, prior to ion-exchange chromatography, cleavage activity did not require linoleic acid. After separation by gel filtration followed by ion-exchange chromatography, cleavage activity was lost but reappeared in the presence of either linoleic acid or dithiothreitol. Under these conditions cleavage activity was coincident with the activity of types 1 and 2 LOX. LOX inhibitors suppressed the cleavage reaction in a manner similar to inhibition of LOX activity. Heat-generated alkoxyl radicals derived from either 13S-HPOT or 13S-HPOD afforded similar products and yields of 13-oxo-9(Z),11(E)-tridecadienoic acid compared to the enzymic reaction. The product 1-penten-3-ol may be the precursor of the "raw-bean" volatile ethylvinylketone.

Documentos Relacionados