Characterization of an adhesion antigen of Streptococcus sanguis G9B.

AUTOR(ES)
RESUMO

An antigen possessing the attributes of an adhesion has been identified in Streptococcus sanguis G9B. Cell surface components were extracted from G9B and a spontaneously occurring nonadherent mutant of G9B, strain Adh-, with a 2 mM barbital buffer, pH 8.6. The extract of G9B but not of Adh- absorbed more than 80% of the adhesion-inhibitory activity of anti-G9B immunoglobulin G (IgG). Immunoblots revealed 80- and 52-kilodalton (kDa) antigens present in the G9B extract but not in the Adh- extract. Absorption of anti-G9B IgG with Adh- and G9B barbital extracts showed a correlation between the loss of the 80- and 52-kDa antibodies and the loss of adhesion-inhibitory activity. An antibody prepared against the 80-kDa antigen excised from sodium dodecyl sulfate-polyacrylamide gels recognized the 80- and 52-kDa antigens and another antigen of 62 kDa but did not inhibit adhesion. However, an antibody from an electroblot containing the native protein from which the 80-kDa and related antigens were derived (the 80-kDa antigen complex) inhibited adhesion to the same extent as anti-G9B IgG. Periodate oxidation of the G9B barbital extract modified the 80-kDa antigen complex and resulted in the loss of 40% of its absorbing activity. The barbital extract also contained an endogenous enzyme responsible for producing the 62- and 52-kDa antigens from the 80-kDa protein and which, under optimal conditions, degraded the antigen completely, resulting in the loss of antibody-absorbing activity. The 80-kDa antigen complex has a molecular mass of more than 200 kDa in native polyacrylamide gels and a pI of 4.1 to 4.8. These observations suggest that the adhesion antigen in S. sanguis G9B is a large glycoprotein from which an 80-kDa antigen complex is derived.

Documentos Relacionados