Characterization of the epitope specificity of murine monoclonal antibodies directed against lipid A.

AUTOR(ES)
RESUMO

A series of monoclonal antibodies directed against lipid A was characterized by using synthetic lipid A analogs and partial structures. These compounds vary in phosphate substitution, acylation pattern (type, number, and distribution of fatty acids), and, in the case of monosaccharides, in their backbone glycosyl residue. The monoclonal antibodies tested could be subdivided into five groups according to their reactivity patterns. One group reacted exclusively with 1,4'-bisphosphoryl lipid A, and a second also reacted with 4'-monophosphoryl lipid A. Two further groups recognized either 4-phosphoryl or 1-phosphoryl monosaccharide partial structures of lipid A. The fifth group reacted with 4-phosphoryl monosaccharide structures and with phosphate-free compounds. Antibodies reactive with monosaccharide structures also recognized their epitopes in corresponding phosphorylated disaccharide compounds. Both groups of monosaccharide and monophosphoryl lipid A-recognizing antibodies have access to their epitopes in bisphosphoryl compounds as well. Because of this unidirectional reactivity with more complex structures, the various specificities cannot be distinguished by using bisphosphoryl lipid A (e.g., Escherichia coli lipid A) as a test antigen. The epitopes recognized by the various monoclonal antibodies all reside in the hydrophilic backbone of lipid A, and there was no indication that fatty acids were part of the epitopes recognized. Nevertheless, the reactivities of compounds in the different test systems are strongly influenced by their acylation patterns; i.e., acyl groups may modulate the exposure of lipid A epitopes.

Documentos Relacionados