Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

Asthma is characterized by an oxidant/antioxidant imbalance in the lungs leading to activation of redox-sensitive transcription factors, nuclear factor κB (NF-κB), and activator protein-1 (AP-1). To develop therapeutic strategies for asthma, we used a chemogenomics approach to screen for small molecule inhibitor(s) of AP-1 transcription. We developed a β-strand mimetic template that acts as a reversible inhibitor (pseudosubstrate) of redox proteins. This template incorporates an enedione moiety to trap reactive cysteine nucleophiles in the active sites of redox proteins. Specificity for individual redox factors was achieved through variations in X and Y functionality by using a combinatorial library approach. A limited array (2 × 6) was constructed where X was either NHCH3 or NHCH2 Ph and Y was methyl, phenyl, m-cyanophenyl, m-nitrophenyl, m-acetylaniline, or m-methylbenzoate. These analogs were evaluated for their ability to inhibit transcription in transiently transfected human lung epithelial A549 cells from either an AP-1 or NF-κB reporter. A small-molecule inhibitor, PNRI-299, was identified that selectively inhibited AP-1 transcription (IC50 of 20 μM) without affecting NF-κB transcription (up to 200 μM) or thioredoxin (up to 200 μM). The molecular target of PNRI-299 was determined to be the oxidoreductase, redox effector factor-1 by an affinity chromatography approach. The selective redox effector factor-1 inhibitor, PNRI-299, significantly reduced airway eosinophil infiltration, mucus hypersecretion, edema, and IL-4 levels in a mouse asthma model. These data validate AP-1 as an important therapeutic target in allergic airway inflammation.

Documentos Relacionados