Chlorophyll a availability affects psbA translation and D1 precursor processing in vivo in Synechocystis sp. PCC 6803

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

Transcript accumulation and translation of psbA as well as processing of the D1 precursor protein were investigated in relation to chlorophyll availability in vivo in cyanobacterial strains lacking photosystem I (PS I). The psbA transcript level was almost independent of chlorophyll availability and was ≈3-fold lower in darkness than in continuous light (5 μE m−2 s−1). Upon illumination, it reached a steady–state level within several hours. Upon growth under light-activated heterotrophic growth conditions (LAHG) in the PS I-less strain, D1 synthesis occurred immediately upon illumination. However, in PS I-less/chlL− cells, which lacked the light-independent chlorophyll biosynthesis pathway and had very low chlorophyll levels after LAHG growth, very little D1 synthesis occurred upon illumination, and the synthesis rate increased with time. This result suggests a translational control of D1 biosynthesis related to chlorophyll availability. Upon illumination, initially a high level of the nonprocessed D1 precursor was observed by pulse labeling and immunodetection in LAHG-grown PS I-less/chlL− cells but not in PS I-less cells. A significant amount of the D1 precursor eventually was processed to mature D1, and the half-life of the D1 precursor decreased as the chlorophyll content of the cells increased. The D1 processing enzyme CtpA was found to be present at similar levels regardless illumination or chlorophyll levels. We conclude that, directly or indirectly, chlorophyll availability is needed for D1 translation as well as for efficient processing of the D1 precursor.

Documentos Relacionados