Circadian variation in sensitivity of suprachiasmatic and lateral geniculate neurones to 5-hydroxytryptamine in the rat.

AUTOR(ES)
RESUMO

Extracellular single-unit recordings were obtained from neurones in the suprachiasmatic nuclei (s.c.n.) of the rat (a putative circadian pace-maker), the ventral lateral geniculate nucleus (v.l.g.n.) and the hippocampus. These areas receive a 5-hydroxytryptamine (5-HT) innervation from the raphe nuclei. Recording of neuronal activity in the s.c.n., v.l.g.n. and the hippocampus revealed a diurnal variation in the response to the ionophoresis of 5-HT. This variation was manifest as a 2-3-fold increase in post-synaptic sensitivity to 5-HT during the subjective dark (active) phase of the circadian cycle. In contrast there was no apparent circadian variation in the sensitivity of s.c.n., v.l.g.n. or hippocampal neurones to ionophoresed gamma-aminobutyric acid (GABA). Neuronal activity recorded in the s.c.n., v.l.g.n. and hippocampus also exhibited a circadian variation in the recovery from 5-HT-induced suppression of firing. This may reflect reuptake processes as recovery can be prolonged by ionophoresis of uptake blockers (imipramine or fluoxetine). Rats (n = 15) expressing circadian arrhythmicity in their rest-activity behaviour induced by long-term continuous illumination (150-200 lx) showed no apparent circadian variation in 5-HT sensitivity. This loss was accompanied by either the development of a 5-6-fold subsensitivity to ionophoresed 5-HT (eleven out of fifteen rats) or a 2-3-fold supersensitivity to ionophoresed 5-HT (four out of fifteen rats). A similar loss of circadian variation and the development of a subsensitivity to ionophoresed 5-HT was also found in three rats sustaining complete electrolytic lesions of the s.c.n. These changes were not found in rats (n = 4) with partial s.c.n. lesions. These results implicate the s.c.n., or fibres passing through it, in the circadian modulation of 5-HT sensitivity in neurones both intrinsic to the s.c.n. circadian pace-maker itself and in the hippocampus and lateral geniculate nucleus (regions remote from the s.c.n.).

Documentos Relacionados