Cloning and Characterization of SCHIP-1, a Novel Protein Interacting Specifically with Spliced Isoforms and Naturally Occurring Mutant NF2 Proteins

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The neurofibromatosis type 2 (NF2) protein, known as schwannomin or merlin, is a tumor suppressor involved in NF2-associated and sporadic schwannomas and meningiomas. It is closely related to the ezrin-radixin-moesin family members, implicated in linking membrane proteins to the cytoskeleton. The molecular mechanism allowing schwannomin to function as a tumor suppressor is unknown. In attempt to shed light on schwannomin function, we have identified a novel coiled-coil protein, SCHIP-1, that specifically associates with schwannomin in vitro and in vivo. Within its coiled-coil region, this protein is homologous to human FEZ proteins and the related Caenorhabditis elegans gene product UNC-76. Immunofluorescent staining of transiently transfected cells shows a partial colocalization of SCHIP-1 and schwannomin, beneath the cytoplasmic membrane. Surprisingly, immunoprecipitation assays reveal that in a cellular context, association with SCHIP-1 can be observed only with some naturally occurring mutants of schwannomin, or a schwannomin spliced isoform lacking exons 2 and 3, but not with the schwannomin isoform exhibiting growth-suppressive activity. Our observations suggest that SCHIP-1 interaction with schwannomin is regulated by conformational changes in schwannomin, possibly induced by posttranslational modifications, alternative splicing, or mutations.

Documentos Relacionados