Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis.

AUTOR(ES)
RESUMO

The Bacillus subtilis genes tpi, pgm, and eno, encoding triose phosphate isomerase, phosphoglycerate mutase (PGM), and enolase, respectively, have been cloned and sequenced. These genes are the last three in a large putative operon coding for glycolytic enzymes; the operon includes pgk (coding for phosphoglycerate kinase) followed by tpi, pgm, and eno. The triose phosphate isomerase and enolase from B. subtilis are extremely similar to those from all other species, both eukaryotic and prokaryotic. However, B. subtilis PGM bears no resemblance to mammalian, fungal, or gram-negative bacterial PGMs, which are dependent on 2,3-diphosphoglycerate (DPG) for activity. Instead, B. subtilis PGM, which is DPG independent, is very similar to a DPG-independent PGM from a plant species but differs from the latter in the absolute requirement of B. subtilis PGM for Mn2+. The cloned pgm gene has been used to direct up to 25-fold overexpression of PGM in Escherichia coli; this should facilitate purification of large amounts of this novel Mn(2+)-dependent enzyme. Inactivation of pgm plus eno in B. subtilis resulted in extremely slow growth either on plates or in liquid, but growth of these mutants was enhanced by supplementation of media with malate. However, these mutants were asporogenous with or without malate supplementation.

Documentos Relacionados