Cloning, characterization, and high-level expression in Escherichia coli of the Saccharopolyspora erythraea gene encoding an acyl carrier protein potentially involved in fatty acid biosynthesis.

AUTOR(ES)
RESUMO

The erythromycin A-producing polyketide synthase from the gram-positive bacterium Saccharopolyspora erythraea (formerly Streptomyces erythraeus) has evident structural similarity to fatty acid synthases, particularly to the multifunctional fatty acid synthases found in eukaryotic cells. Fatty acid synthesis in S. erythraea has previously been proposed to involve a discrete acyl carrier protein (ACP), as in most prokaryotic fatty acid synthases. We have cloned and sequenced the structural gene for this ACP and find that it does encode a discrete small protein. The gene lies immediately adjacent to an open reading frame whose gene product shows sequence homology to known beta-ketoacyl-ACP synthases. A convenient expression system for the S. erythraea ACP was obtained by placing the gene in the expression vector pT7-7 in Escherichia coli. In this system the ACP was efficiently expressed at levels 10 to 20% of total cell protein. The recombinant ACP was active in promoting the synthesis of branched-chain acyl-ACP species by extracts of S. erythraea. Electrospray mass spectrometry is shown to be an excellent method for monitoring the efficiency of in vivo posttranslational modification of ACPs.

Documentos Relacionados