Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.

AUTOR(ES)
RESUMO

The Bacillus subtilis araR locus (mapped at about 294 degrees on the genetic map) comprises two open reading frames with divergently arranged promoters, the regulatory gene, araR, encoding a repressor, and a partially cloned gene, termed araE by analogy to the Escherichia coli L-arabinose permease gene. Here, we report the cloning and sequencing of the entire araE gene encoding a 50.4-kDa polypeptide. The araE gene is monocistronic (as determined by Northern blot analysis), and its putative product is very similar to a number of prokaryotic proton-linked monosaccharide transporters (the group I family of membrane transport proteins). Insertional inactivation of the araE gene leads to a conditional Ara- phenotype dependent on the concentration of L-arabinose in the medium. Therefore, we assume that araE encodes a permease involved in L-arabinose transport into the cell. The araE promoter region contains -10 and -35 regions (as determined by primer extension analysis) very similar to those recognized by RNA polymerase containing the major vegetative-cell sigma factor sigmaA, and the -35 region of the transcription start point for araE is located 2 bp from the -35 region of the araR gene. Transcriptional studies demonstrated that the expression from the araE promoter is induced by L-arabinose, repressed by glucose, and negatively regulated by AraR. These observations are consistent with a model according to which in the absence of L-arabinose, AraR binds to a site(s) within the araE/araR promoter, preventing transcription from the araE promoter and simultaneously limiting the frequency of initiation from its own promoter; the addition of L-arabinose will allow transcription from the araE promoter and increase the frequency of initiation from the araR promoter.

Documentos Relacionados