Co-induction of beta-galactosidase and the lactose-P-enolpyruvate phosphotransferase system in Streptococcus salivarius and Streptococcus mutans.

AUTOR(ES)
RESUMO

The addition of lactose, galactose, or isopropyl-beta-D-thiogalactoside (IPTG) to glucose-grown cells of Streptococcus salivarius 25975 resulted in the co-induction of both the lactose-P-enolpyruvate phosphotransferase system (lactose-PTS) and beta-galactosidase, with the latter the predominant metabolic system. With various strains of Streptococcus mutans and Streptococcus sanguis 10556, on the other hand, the lactose-PTS was the major metabolic pathway with beta-galactosidase induced either to low or negligible levels. In all cases, induction of the lactose-PTS resulted in the concomitant induction of 6-P-beta-galactosidase. The induction by lactose of both the lactose-PTS and beta-galactosidase in all strains was repressed by glucose and other catabolites, notably, fructose. Induction of beta-galactosidase in S. salivarius 25975 by IPTG was, however, relatively resistant to glucose repression. Induction experiments with IPTG and lactose suggested that a cellular metabolite of lactose metabolism was a repressor of enzyme activity. Exogenous cAMP was shown to reverse the transient repression by glucose of beta-galactosidase induction in cells of S. salivarius 25975 receiving lactose, provided the cells were grown with small amounts of toluene to overcome the permeability barrier to this nucleotide, cAMP, was however, unable to overcome the permanent repression of beta-galactosidase activity to a significant extent under these conditions.

Documentos Relacionados