Co-utilization of polymerized carbon sources by Bacteroides ovatus grown in a two-stage continuous culture system.

AUTOR(ES)
RESUMO

Bacteroides ovatus NCTC 11153 was grown in a two-stage continuous culture system at various growth rates (vessel 1, D = 0.06 to 0.19 h-1; vessel 2, D = 0.03 to 0.09 h-1) on media containing mixtures of starch and arabinogalactan as carbon sources. The cell-associated enzyme activities needed to hydrolyze both substrates (amylase, arabinogalactanase, alpha-glucosidase, beta-galactosidase, and alpha-arabinofuranosidase) were variously influenced by growth rate and polysaccharide availability but were detected under all growth conditions tested. Measurements of residual carbohydrate in spent culture media showed that both polysaccharides were co-utilized during growth under putative C-limited conditions. The arabinogalactan was partly depolymerized in N-limited chemostats, and significant amounts of arabinose- and galactose-containing oligosaccharides accumulated in the cultures, indicating that starch was being preferentially utilized. Acetate, propionate, and succinate were the major fermentation products formed by C-limited bacteria, but under N limitation, lactate was also produced. Molar ratios of succinate increased concomitantly with the dilution rate in C-limited chemostats, whereas molar ratios of propionate decreased. During N-limited growth, however, decarboxylation of succinate to propionate was relatively independent of growth rate. Cell viability was higher in C-limited cultures compared with those grown under N limitation and was greatest at high dilution rates, irrespective of nutrient limitation.

Documentos Relacionados