Coagulation/precipitation of effluents from anaerobic expanded bed reactor and activated sludge system preceded by UASB reactor, with particle removal by sedimentation or flotation / Coagulação/precipitação de efluentes de reator anaeróbio de leito expandido e de sistema de lodo ativado precedido de reator UASB, com remoção de partículas por sedimentação ou flotação

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

The anaerobic reactors of modern conception (e.g., UASB and RALEx) remove from 65 to 75% of sanitary wastewater organic matter with relatively low construction, operation, and maintenance costs, in comparison with conventional aerobic processes. Nevertheless, that reactors are usually little efficient in nutrient removal and their effluents may present relatively high organic matter and suspended solid concentrations. In order to improve the quality of effluents from anaerobic reactors, some post-treatment concepts have been employed in Brazil, among which activated sludge systems and coagulation/precipitation with metallic salts, generally followed by dissolved air flotation. In this research, coagulation/precipitation with ferric chloride was assessed using sedimentation and flotation lab-scale test units (jar test and flotateste, respectively) to three post-treatment systems, namely: coagulation/precipitation of effluent from anaerobic reactor; co-precipitation (in the mixed liquor from activated sludge system); and post-precipitation of effluent from activated sludge system. Each system was assessed with solids separation with sedimentation and dissolved air flotation, constituting six different post-treatment scenarios. Coagulation/precipitation of the effluent from the anaerobic reactor showed to be technical and economically attractive, not only for sedimentation but also for dissolved air flotation. Coagulation diagrams obtained in sedimentation and flotation essays showed that coagulation/precipitation of the effluent from RALEX was more efficient when pH values were between 5 and 7. The mixed liquor coagulation/flocculation with ferric chloride were also an attractive option, resulting in a low turbidity effluent suitable for reuse. In this option, additional removals (i.e., in relation to decanted mixed liquor) of turbidity, COD e phosphorus were obtained: 80%, 72% and 85%, respectively, with the dosage of 80 mg FECL IND.3.6H IND.2O/L (48 mg FECL IND.3/L). Flotation did not presented good results in the removal of turbidity, COD and phosphorus in mixed liquor coagulation/precipitation with ferric chloride. The same was to the effluent from the WWTP when sedimentation was employed in the solids separation step. When solids separation was made using flotation, the removal efficiencies of turbidity, COD and phosphorus were, respectively, 68%, 53%, and 83% for the dosage of 80 mg FECL IND.3.6H IND.2O/L

ASSUNTO(S)

esgoto sanitário anaerobic expanded bed reactor flotação por ar dissolvido sedimentação precipitation reator anaeróbio de leito expandido upflow anaerobic expanded bed (uasb) reactor precipitação sanitary wastewater coagulation ferric chloride coagulação dissolved air flotation sedimentation reator anaeróbio de manta de lodo (uasb) cloreto férrico

Documentos Relacionados