Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells.

AUTOR(ES)
RESUMO

Specific transfer and expression of bacterial luciferase genes via bacteriophages provides an efficient way to detect and assay viable host cells. Listeria bacteriophage A511 is a genus-specific, virulent myovirus which infects 95% of Listeria monocytogenes serovar 1/2 and 4 cells. We constructed recombinant derivative A511::luxAB, which carries the gene for a fused Vibrio harveyi LuxAB protein inserted immediately downstream of the major capsid protein gene (cps). Efficient transcription is initiated by the powerful cps promoter at 15 to 20 min postinfection. Site-specific introduction of the luciferase gene into the phage genome was achieved by homologous recombination in infected cells between a plasmid carrying A511 DNA flanking luxAB and phage DNA. Recombinants occurred in the lysate at a frequency of 5 x 10(-4) and were readily identified by the bioluminescent phenotype conferred on newly infected host cells. A511::luxAB can be used to directly detect Listeria cells. Following infection and a 2-h incubation period, numbers as low as 5 x 10(2) to 10(3) cells per ml were detected by using a single-tube luminometer. Extreme sensitivity was achieved by including an enrichment step prior to the lux phage assay; under these conditions less than 1 cell of L. monocytogenes Scott A per g of artificially contaminated salad was clearly identified. The assay is simple, rapid, inexpensive, and easy to perform. Our findings indicate that A511::luxAB is useful for routine screening of foods and environmental samples for Listeria cells.

Documentos Relacionados