CONVENTIONAL AND SIMPLIFIED-HYBRID BOUNDARY ELEMENT METHODS APLLIED TO AXISYMMETRIC ELASTICITY PROBLEMS IN FULLSPACE AND HALFSPACE / MÉTODOS DE ELEMENTOS DE CONTORNO CONVENCIONAL E HÍBRIDO SIMPLIFICADO APLICADOS A PROBLEMAS AXISSIMÉTRICOS DE ELASTICIDADE NO ESPAÇO COMPLETO E NO SEMI-COMPLETO

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

This thesis presents the formulation of the conventional and simplified-hybrid boundary element methods for axisymmetric problems, employng fullspace as well as halfspace fundamental solutions. As it is mostly found in the literature on axisymmetric problems in the elastic halfspace, the boundary element formulations make use of fullspace fundamental solutions and insert a mesh discretization of the free surface, with truncation at a reasonable distance from the axis of axisymmetry. This discretization can be circunvented if one employs the fundamental solutions that satisfy in advance the traction free boundary condition on the free surface. This work presents the implementation of these axisymmetric fundamental solutions for both the fullspace and the halfspace, given in terms of integrals of Lipschitz-Hankel type. Explicit equations for post-processing results at internal points are provided, as well as the adequate numerical schemes to evaluate the boundary integrals that arise in the formulation. It is shown that the boundary element method for the halfspace can be easily implemented from existing computation codes for fullspace problems, requiring only a few modifications. This work also addresses the simplified-hybrid boundary element method for the axisymmetric fullspace and halfspace problems. In its original version, the use of spectral properties to completely formulate the method was possible for only strictly non-convex topological configurations. The key contribution of the present developments consisted in the correct application of a hybrid contragradient theorem to derive a simple means of using analytical solutions of the elastic problem in order to substitute for the spectral properties that have been originally proposed. In the simplified-hybrid boundary element method, only one matrix requires integration and the results at internal points can be evaluated directly, which makes the method extremely advantageous for axisymmetric problems. Some numerical examples validate the proposed formulations.

ASSUNTO(S)

boundary element method metodo dos elementos de contorno

Documentos Relacionados