Covalent Modifications of the Ebola Virus Glycoprotein

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The role of covalent modifications of the Ebola virus glycoprotein (GP) and the significance of the sequence identity between filovirus and avian retrovirus GPs were investigated through biochemical and functional analyses of mutant GPs. The expression and processing of mutant GPs with altered N-linked glycosylation, substitutions for conserved cysteine residues, or a deletion in the region of O-linked glycosylation were analyzed, and virus entry capacities were assayed through the use of pseudotyped retroviruses. Cys-53 was the only GP1 (∼130 kDa) cysteine residue whose replacement resulted in the efficient secretion of GP1, and it is therefore proposed that it participates in the formation of the only disulfide bond linking GP1 to GP2 (∼24 kDa). We propose a complete cystine bridge map for the filovirus GPs based upon our analysis of mutant Ebola virus GPs. The effect of replacement of the conserved cysteines in the membrane-spanning region of GP2 was found to depend on the nature of the substitution. Mutations in conserved N-linked glycosylation sites proved generally, with a few exceptions, innocuous. Deletion of the O-linked glycosylation region increased GP processing, incorporation into retrovirus particles, and viral transduction. Our data support a common evolutionary origin for the GPs of Ebola virus and avian retroviruses and have implications for gene transfer mediated by Ebola virus GP-pseudotyped retroviruses.

Documentos Relacionados