Cross-resistance between cisplatin, antimony potassium tartrate, and arsenite in human tumor cells.

AUTOR(ES)
RESUMO

Cross-resistance between cisplatin (DDP) and metalloid salts in human cells was sought on the basis that mechanisms that mediate metalloid salt cross-resistance in prokaryotes are evolutionarily conserved. Two ovarian and two head and neck carcinoma cell lines selected for DDP resistance were found to be cross-resistant to antimony potassium tartrate, which contains trivalent antimony. The DDP-resistant variant 2008/A was also cross-resistant to arsenite but not to stibogluconate, which contains pentavalent antimony. A variant selected for resistance to antimony potassium tartrate was cross-resistant to DDP and arsenite. Resistance to antimony potassium tartrate and arsenite was of a similar magnitude (3-7-fold), whereas the level of resistance to DDP was greater (17-fold), irrespective of whether the cells were selected by exposure to DDP or to antimony potassium tartrate. In the resistant sublines, uptake of [3H]-dichloro(ethylenediamine) platinum(II) was reduced to 41-52% of control, and a similar deficit was observed in the accumulation of arsenite. We conclude that DDP, antimony potassium tartrate, and arsenite all share a common mechanism of resistance in human cells and that this is due in part to an accumulation defect.

Documentos Relacionados