Cyclic AMP-dependent modulation of giant depolarizing potentials by metabotropic glutamate receptors in the rat hippocampus.

AUTOR(ES)
RESUMO

1. Intracellular recordings were used to study the role of metabotropic glutamate receptors (mGluRs) in modulating GABA-mediated giant depolarizing potentials (GDPs) in immature rat hippocampal CA3 neurones. 2. The mGluR antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG, 1 mM) reduced the frequency of GDPs. The broad-spectrum ionotropic glutamate receptor antagonist kynurenic acid (1 mM) blocked GDPs. 3. In the presence of kynurenic acid, both tetanic stimulation of the hilus or bath application of quisqualic acid (1 microM) and trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD, 20 microM) induced the appearance of GDPs. These effects were antagonized by MCPG (1 mM) or L(+)-2-amino-3-phosphonopropionic acid (L-AP3) and blocked by bicuculline (10 microM). 4. 8-Bromo-cAMP (8-Br-cAMP, 0.3 mM), 3-isobutyl-1-methylxanthine (IBMX, 200 microM) or forskolin (30 microM) mimicked the effects of mGluR agonists on GDPs. The forskolin analogue 1,9-dideoxyforskolin (30 microM), which does not activate adenylate cyclase, was ineffective. 5. Incubation of slices in the presence of the protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPS) (500 microM) or superfusion of Rp-cAMPS (20 microM) prevented the effects of forskolin or t-ACPD on GDPs. In the presence of kynurenic acid, the protein kinase C activator, phorbol 12,13-diacetate (2 microM) induced the appearance of GDPs. This effect was prevented by staurosporine (1 microM). However, staurosporine (1-3 microM) did not modify the effects of t-ACPD on GDPs. 6. It is suggested that, during development, mGluRs enhance the synchronous release of GABA, responsible for GDPs, through cAMP-dependent protein kinase.

Documentos Relacionados