Cytotoxic activity of the Proteus hemolysin HpmA.

AUTOR(ES)
RESUMO

We previously showed that hpmA is the hemolysin determinant most commonly found among Proteus isolates. To assess the potential contribution of HpmA to virulence, we first characterized the toxic activities of this hemolysin. Hemolytic activity was present in total cell cultures and cell-free supernatants of Proteus clinical isolates as well as Escherichia coli containing cloned hpm genes. HpmA also possesses cytotoxic activity which was detected by a chromium release assay against a variety of target cell lines (Daudi, Raji, T24, U937, and Vero). Analysis of the dose response of bacterial cells against both T24 cells and erythrocytes showed that E. coli containing cloned hpm genes was 30-fold more cytotoxic than Proteus mirabilis BA6163. Also, 10(5)-fold more bacterial cells were needed to lyse T24 cells than to lyse erythrocytes. HpmA- mutants of two Proteus strains in which the central portion of hpmA was deleted were constructed. These HpmA- mutants, which have lost the hemolytic and cytotoxic activities exhibited by their respective parent strains, demonstrate that HpmA is needed for both of these activities. In an ascending model of murine urinary tract infection, the hpmA mutant strain WPM111 behaved no differently from its parent strain, BA6163, with respect to either the level of kidney colonization or histopathological changes in the kidney. However, WPM111 had a sixfold higher 50% lethal dose than BA6163 when injected intravenously into C3H mice.

Documentos Relacionados